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Abstract

Over 25 years of phase retrieval are reviewed. Application areas include astronomy,’? space-object
imaging with both passive-incoherent® and active-coherent*56.7 illumination, wave-front and telescope-
misalignment sensing,®?19.11.12.73 3.0 coherent imaging,’* and synthetic-aperture radar.!s:16.17
Algorithmic approaches include modifications of the Gerchberg-Saxton algorithm'® such as the hybrid
input-output algorithm,’'¥ gradient-search error-minimization techniques,®'® approaches to climbing out
of stagnation, “° support estimation from autocorrelation support,2!.22 phase diversity,'?:'® and sharpness
maximization algorithms.!’
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Outline

Examples of Phase Retrieval Applications
Phase Retrieval Basics
o Definition
o Constraints
lterative-Transform Phase Retrieval Algorithms
o Error-Reduction
5 Hybrid Input-Output
» Gradient Search Nonlinear Optimization
Wavefront Sensing for Broadband, Undersampled Data
Support Reconstruction
3-D Reconstruction of Coherently llluminated Opagque Objects
o Imaging Correlography
o Laboratory Demonstration
Phase Diversity
SAR Autofocus
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Passive Imaging of Space Objects

* Problem: atmospheric turbulence limits resolution to

A
~1 arc-sec = 5*107°rad. = __ for & = 0.5 microns and r, = 10 cm

O
— as compared with Keck 10 m telescope diffraction limit of

A
g =0.01 arc-sec = 0.05*10 rad.

— 100x factor of improvement possible !

» Solutions:
— Hubble Space Telecope (2.4 m diam.), $2 B
— Adaptive optics + laser guide star, $10's M
— Optical interferometry, $10’s M

— Stellar speckle interferometry, < $1 M



Labeyrie’s Stellar Speckle Interferometry

ERIM International

1. Record blurred images: gik(x, y) =f(x, y) * si{x,y) , k=1, ... K

where s, (x, y) is kth point-spread function due to atmospheric tubulence

2. Fourier transform: Gy(u, v) = F(u, v) Sy (u, v), k=1, ... | K

I A

where Sy (u, v) is ki optical transfer function

K K
3. Magnitude square and average: J( Y [Gilu, V)2 = [F(u, v)|=2 :< D ISk(u, V)2
= K=

K
4. Measure or determine transfer function :< 2 1S(u, v)|2
k=1

— atmospheric model or measure reference star

K
5. Divide by ¢ 3 S(u, V)P to obtain [F(u, V)2
k=1

Reference: A. Labeyrie, "Attainment of Diffraction Limited Resolution in Large Telescopes by Fourier
Analysing Speckle Patterns in Star Images," Astron. and Astrophys. 6, 85-87 (1970).



Phase Retrieval Basics

ernational

Fourier transform: F(u, v) = [ | f e 12mux +v¥) dx dy
= [F(u, v)| elvlu. V) = #[f(x, y)]
Inverse transform: f(x, y) = [ [ F(u, v) e*2"+¥) gx dy = 7 1[F(u, v)]

Phase retrieval problem:

Given |F(u, v)| and some constraints on f(x, y),

Reconstruct f(x, y) or, equivalently, retrieve the phase
y(u, v)

Inherent ambiguities:
IFQu, v)I = [FTf(x, y)II = [F[eCF(X = X0, Y = Yo)ll = | F[16F" (=X = X0, =Y — Yo)]

(phase constant, images shifts, twin image all result in same data)

Autocorrelation:

)= []7 10, y) PO = x, y' = y) dX' dy' = 7[IF(u, V)]



Nonnegativity and Support Constraints

ernational

» Nonnegativity constraint: f(x,y) >0

— True for ordinary incoherent imaging, crystallography, MRI, etc.
— Not for coherent imaging, e.g., SAR, ultrasound imaging, HLR

* The support of an object is the set of points over which it is nonzero

* This is meaningful for objects on dark backgrounds
— E.qg., satellites, astronomical objects, missiles, laser-illuminated objects

— Or may have known support, such as for retrieving the aberrations of
HST

* When imaging phase is totally destroyed,
a support constraint is essential for image reconstruction

* When an image is formed with some residual phase errors,

a support constraint can be used to correct the residual errors
and improve image quality



Optimization Techniques

ERIM International

Minimize error metric by
v lterative transform algorithm (Gerchberg-Saxton/Fienup)
v Gradient search (steepest descent, conjugate gradient, . . .)

o Cut&try

Damped least squares (Newton-Raphson)

Linear programming

Neural network

* efc.



ERIM International

Iterative Transform Algorithm

START:
Initial Estimate

—P
g—p

- »G-oigle?

i

Constraints:
Support, — P

(Nonnegativity)

Form New Input
Using Image
Constraints

l

Satisfy Fourier Measured Data:
Domain <— Magnitude, |FI
Constraints

l

g €—

€« G =Fle?




Error Reduction
= Projection onto Sets

\ Constraint
_ Set #1

(non-convex)

Constraint

7 (conex

//o// lfa,be S,

4 thenc=ta+{(1—-t)be S,
0=2t=1



Error Reduction Algorithm
jonal versus Gradient Search

Minimize Eg = 2 [IGk(u)l = IF(u)]]°, where Gi( 29 o-i2nuex/N

constrained by gk( ) >0, VX

| | [ OEgk)
Steepest descent gradient search: gy,1(x) = gk(x) + stepe L_ag(x)J

Linear approximation to Ef yields step size such that
Ok+1(X) = Gu(X) + (1/2)[gi'(X) = Gk(X)]

or, since Ef is quadratic, use double step size:

O+ 1(X) = GilX) + [G' (%) = G(X)] = gk'(X)

That is, steepest descent does same thing as error-reduction algorithm




Error-Reduction Algorithm

onal

Error-reduction algorithm can be viewed as

* Projection onto (nonconvex) sets
» Steepest descent gradient search algorithms
» Successive approximations

Error-reduction algorithm has convergence proof:
Er(iter. n+1) < E,(iter. n) < Eg(iter. n)

" 1G] - Fuv) P2 > gyl
where Ep= | " — L
F 2 Fuv)F | T Y g xy)P

Hybrid input-output algorithm
— No convergence proof — error metric may even increase
— In practice converges much faster



lterative Transform Algorithm Variants

nal

g 9" 9+Q g
T 3
Error reduction Basic input-output
{Qk ,mne OK gk, mne OK
I+ 7 10, mn e notOK I+t = {Qk— Bgi , mn e notOK

Output-output

{gi( ) mn € OK
Ihett = gk — Bgk , mn € notOK

Hybrid input-output

{gf( , mne OK
ket = gk — P9k , mn e notOK



First Phase Retrieval Result

Systems Division

zmég
vl ]
B

(a) Original object, (b) Fourier modulus data, (c) Initial estimate
(d) — (f) Reconstructed images — number of iterations: (d) 20, (e) 230, (f) 600

Reference: J.R. Fienup, Optics Letters, Vol 3., pp. 27-29 (1978).
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Systems Division

Image Reconstruction from
Simulated Speckle Interferometry Data

Ideal Image ImageBlurred  Image Blurred
by Atmnsphe_ra -1 byAtmosphere-2.

Fourler Magnitude !maga.neconstructed by
from Blurred Images Phase Retrieval Algorithm



ERIM International

Error Metric versus lteration Number

RMS ERROR E

0.5

0.4

0.3

0.2

0.1

r

Error Reduction

Hybrid Input-Output

L X 1 1Y 1 g3 i

20 40 60
ITERATION k



Object and Autocorrelation Supports

ERIM International
‘:FT‘ _—rlrﬂ'i(,_ \\U
‘ i X\\‘*ﬁ’
£ &3 Y
' " ‘
Object _ |
Support Forming Autocorrelation Support

\‘u

" g

Autocorrelation Support



Bounds on Object Support

ERIM International

a4
P— .
L= agc/\/
Object

Support

Triple Intersection of Autocorrelation Supports

* Triple-Intersection Rule  [Crimmins, Fienup, & Thelen, JOSA A 7, 3 (1990)]



Triple Intersection for Triangle Object

(c)

* Family of solutions for object support from autocorrelation support
* Use upper bound for support constraint in phase retrieval

* Does not imply ambiguity of phase retrieval per se



Overcoming Striping Stagnation

® HIO can climb out of many local minima

— J.H. Seldin and J.R. Fienup, "Numerical Investigation of the Uniqueness
of Phase Retrieval," J. Opt. Soc. Am. A7, 412-427 (1990).

— H. Takajo, T. Takahashi et al., “Study on the convergence property of the
hybrid input output algorithm used for phase retrieval,” J. Opt. Soc. Am. A
15, 2849 (1997).

— H. Takajo, T. Takahashi, T. Shizuma, “Further study on the convergence

property of the hybrid inputoutput algorithm used for phase retrieval,”
J.Opt.Soc. Am. A 16, 2163 (1998)

® Robust local minima often associated with Fourier zeros

> Whether the Fourier transform has a zero or just a near-zero
— With noise and sampling, it is not obvious

o At zeros: phase branch cuts = knots = vortices = screw dislocations
o Causes striping artifact in real, nonnegative imagery
» Can be overcome by voting or patching algorithms

— J.R. Fienup and C.C. Wackerman, “Phase Retrieval Stagnation Problems
and Solutions,” J. Opt. Soc. Am. A 3, 1897-1907 (1986).

JRF 501



Determine HST Aberrations from PSF

ERIM International

2.4 m

(Hubble Space Telescope)




Techniques Employing Gradients

ERIM International

Minimize Error Metric, e.g.: E = 2, W(u) [ IG(u)l = IF(u)l ]2
u

COI’T[OUI’ PiO[ Of EI’I’OI’ iVi@In(: Repeat three Steps:

1. Compute gradient:
oE JE

o’ "

2. Compute direction of
search

Parameter 2

3. Perform line search

'

Parameter 1

Gradient methods: Steepest Descent
Conjugate Gradient
Davidon-Fletcher-Powell



Analytic Gradients

ERIM International

E = 2 W(u) [IG(U) — IF(u)I]?
u

For point-by-point phase map, 6(x),
OE
96(x)

= 2 Imig(x) gw*(x)}

For Zernike polynomial coefficients,
JE

where

multiple-plane Fresnel transforms compared with
with phase factors and obscuration alculation by finite differences

Pe] canbe a single FFT or Analytic gradients very fast
S C




- Hubble Telescope Retrieval Approach

Systems Divisio

® Pupil (support constraint) was known imperfectly

® Phase was relatively smooth and dominated by low-order Zernike’s
— Use boot-strapping approach

1. With initial guess for pupil, fit Zernike polynomial coefficients
(parametric phase retrieval by gradient search)

2. With initial guess for Zernike polynomials, estimate pupil by ITA
(retrieve magnitude, given an estimate of phase)

3. Redo steps 1 and 2 until convergence (2 iterations)

4. Estimate phase map by ITA, starting with Zernike polynomial phase
(nonparametric phase retrieval by G-S or gradient search)

5. Refit Zernike coefficients to phase map

6. Redosteps2-5



"™ ERIM Phase Retrieval with Broadband,
aemational Ine. | Jndersampled Data:Background & Motivation

We wish to determine the aberrations of an optical system, given
readily available information —— measured point-spread functions {(PSFs)

We ran arcomnlich thie 1isina-
L B Al \_r\.\_luvlllr.lllull Ll 1IN U\.}lllw.

» Knowledge of the pupil function of the system,
* the Fourier reationship between the optical fields in the pupil and focal planes,
* and a phase retrieval algorithm

Previously used phase retrieval algorithms to determine wavefront
aberrations:

— Analytic gradient search
— lterative Transform (Gerchberg-Saxton) Algorithm

[1] J.R. Fienup, “Phase-Retrieval Algorithms for a Complicated Optical
System,” Appl. Opt. 32, 1737-1746 (1993).

[2] J.R. Fienup, J.C. Marron, T.J. Schulz and J.H. Seldin, *Hubble Space
Telescope Characterized by Using Phase Retrieval Algorithms,” Appl. Opt. 32
1747-1768 (1993).

JREF 10/9/98



(@ NERIM Limitations of Previous Approaches

* Algorithm restrictions:

— Narrow-band light AA/A; <<

J- .u....-. —~ w—

Restricted retrieval ~ o rouah narrow-band
— — NESicleq retrievai HTIdyCo L IlUUg h n dlTovw-pdriiu

7S

N KR,
HileTlo Ol

| ly

— Nyquist-sampled data

— — Restricted retrieval to images from Hubble Space Telescope

through filters with
Ac > 0.500 um for Planetary Camera

Ae > 1.667 um for Wide-Field Camera (none existed)

» Consequence: Could not use many of the available images of stars

» Solution: Generalized phase retrieval algorithm using physical model
that includes wide-band light and undersampling

+ Computationally efficient analytic expression for gradient

JRF 10/9/98



FNERIM Previous Wavefront Model,
gy - ctonel inc Error Metric, and Gradient

Wavefront in detector plane is Fourier transform of wavefront in pupil plane:

G(p.a) = Plomm] = 3 glmmoxp) iz 7 + 1|

L A

where g(m,n) = A(m,n)explio(m,n)]

where the phase error is given either by Zernike coefficients or point-by-point
J

phase map: ¢(m,n) = Zaij(m,n) or ¢(m,n) = ¢p,{m,n)
j=1

To minimize Error Metric: £ = 2. W(p,q) [|G(p.q)| — | F(p,q)! T2

p.q
0E
Use gradient (for example): Ja = 2 Im 2 g(m, n)y g"*(m,n)Z{m,n)
j mn
F ]
where G"(p.q)=W(p q)G(m)LGE’; g;‘ —1} and g"(m,n)=P[G"(p.q)]

JRF 10790



¥ AERIM Generalized Wavefront Model

Wavefront in detector plane is Fourier transform of wavefront in scaled pupil
plane:

e [ ) () oo N T ‘mp  ng\]
G (p,q) = L%JEA mn)exp[i—qbokbt{ mn”expt IZRL WJJ

mn /If

where the phase error has some Zernike coefficients that differ amongst
images, others that are the same, and a point-by-point phase common to all:

J

4
¢Ok(m !’J Zajd ijd(m n) Zajszjs(ms n)+¢opp(man)
ja=2 js=5

To avoid having to interpolate A and ¢, (m,n} prior to FFT,
perform interpolation during FFT by using:

G[fk(p, Q) [i JXA m n)eXp{l%(Pok (m n)}exp{—:Zn[;fﬂ—ﬁc—’-H

mn ¢ 4 Nf’
A Ao
where M, = AUAX =M, , and 4, is a reference wavelength
Az ;i*.(

(pick A,’s so that M,’s are highly composite numbers for efficient FFT’s)

JRE 10/3/08



(@ NERIM Generalized Error Metric

Minimize a weighted, normalized, mean-squared error metric:

K DL
E=K' Y ®."Y W(p.q)grid(p, q){ak 1 Y.8,(G(p.q)° = D(p.q) - |F|, (P q)w

k=1 pg |_ \ =1
where S, = Spectral response at (" wavelength, 1,,
= D(p,q) = convolution with detector pixel area,
o, = normalization factor to give computed k"' psf the same strength as F,
F, = the square root of the k" measured, corrected data,
grid(p,q) = the pixel sampling function
W, (p,g) = a pixel-by-pixel weighting function for KN data set

b, =D, = EWk(p,q)[F\k(p,q)]2 is the weighted energy in the k™" data set
ele

JRF 16:/3:G8



¢ ANERIM Efficient Analytic Gradients

Have derived analytic gradients for partial derivatives of E with respect to
gk = Zernike coefficients that differ amongst data sets, 8 = Zernike coef.s same for all data sets,

q)opp(m, n) = Point-by-point phase map, A (m, n) = Point-by-point aperture function
oy = PSF weighting function

allowing various combinations of terms to be held fixed or optimized.

For example for pixel-by-pixel phase,

2

OF 2 Ku2 L (2 We
=== NS Imlg, (my, ik (Mg, M)
o) K 2 5, m[g_(rm M)gik (M ”1)]

where g,{(my,ny) is the field in the aperture, and

Felpay

gl (mn) = ¥ exp{ fzn[ e Ot ﬂciik(p1,m)><z D(p - prq -~ G Welp.gridp.afi-
P J pa ak\ ZS ‘G!k P, CF)| “D(p.q)

This requires 2LK FFT’s

Minimize Error metric using gradient-based nonlinear optimization code

Used Matlab’s fminu with options:

Broyden/Fletcher/Goldfarb/Shanno or Davidon/Fletcher-Powell quasi-Newton

and for point-by-point phase functions or aperture amplitudes:Conjugate Gradient (no Hessian
required)

all using a mixed quadratic and cubic line search

JREA0IGE



F AERIM Simulated Star Images

{a) polychromatic PSF a (b) polychromatic PSF b

(c) monechromatic PSF a {d} monochromatic PSF b

* —-0.30 um rms Spherical, small amounts of others; ¢ 2x2 pixel integration;

« WF/PC F555W filter, {1} = {472.5, 516.0, 562.5, 609.0, 656.0} nm
{S}={0.78, 0.91, 0.82, 0.50, 0.18}

JRF 10



@Eﬁ’ﬂ” Error Metric Versus lteration Number

0.4 T T T T T T T

“ne
.

.....
h‘__
___________________________________________________________________________

Normalized Mean Squared Error Metric

0.01F 3
Five Wavelengths
0.001} J
0.0001 ' L ' . ' '
0 100 200 300 400

lteration Steps

One iteration step = one function evaluation

(typically 3 to 6 function evaluations per gradient caculation)

JEF 100950



Pupil-Plane Imaging

ERIM International

Problem:
p = AR/D: For fine resolution, need short wavelength and large aperture
— Large apertures are heavy and expensive

I1Ise aberrations & blur

Also, atmospherics and imperfect optics cal

!aJ
(@
D
wn

Solution:
Laser illumination — Ensures adequate light level; Day/night operation
— Enables unconventional coherent imaging modalities

Pupil-plane sensing — Minimum depth ==> light weight, low cost

Sparse, distributed detector array
— Further reduce weight and cost

Phase retrieval & array phasing algorithms —3
needed to correct phase errors 8855
F|l1ed array
* Trades more computer processing 0°°
for less complicated optical hardware ° e
Sparse array
’_ﬂﬁmosphere 0000008 o
' EET 8 o
N / HE g o
Laser Detector array 1-D array(s) with

aperture synthesis



Reconstruction of Complex-Valued Images

Systems Division

® No nonnegativity constraint, so use only support constraint
® Support constraint must be good
o Asymmetric (e.g., triangle, not rectangle or ellipse)
o Nonconvex
> Tight

JRF 5/01



Complex-Valued Image Reconstruction
Using Phase over Part of Aperture

Systems Division

Fourier Intensity

2 T
FITTA (1) - Ag(u)] %
Diffraction- S

Limited Image

9|
Fourier modiins Low resolution
_ Fluray (w image e(x e
N _ ' (A) (B

A

Fourier Intensity

2
[F{u)| Aglu)
Support Reconstructad tdeul
constraing image image
NS AT -
i ’ﬂ}\] ey
(<) I (£

> J.R. Fienup and A.M. Kowalczyk, "Phase Retrieval for a Complex-Valued Object by
Using a Low-Resolution Image," J. Opt. Soc. Am. A 7, 450-458 (1990).

JRF s/



Convergence of Complex-Valued Image
Reconstruction Using Phase over Part of Aperture

1.0 : ; ; 63
0.9 ~ LEGEND - 99
o ODEM ; _
08 L % ABSERR 7 bb
- B R Fourier weighting
®) = 91
"8 07 +~ |
S - 47
B 06 L a3 g
- —
o : ©
O 05 - - 39 £
@
o | e 2
S 03 - | 7
Iy - 97
0‘2 L E...%)
A 423
Ei\f Y/ m 4 e -
0.1 4= 2&;‘;&’ & Nm%ﬁﬂ e ~ 19
00 i S e S 2 s W el M B e WP TN 15
0 200 400 600 800 1000 12C0

Number of lterations
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PROCLAIM 3-D Imaging Concept
Phase Retrieval with Opacity Constraint LAser IMaging

ERIM International

tiinahle lacer

direct-detection
array

Vy, V, oo e,V

W initial

estimate phase 3-D
| from »| retrieval | EFT
locator algorithm
set
/////
collected reconstructed

data set object




Imaging Correlography

» Get incoherent-image information from coherent speckle pattern

Incoherent Fourier squared m magnitude:

IFy(u, v, w)I2 = <[D(u, v, W) — Io]ﬁi%[Dk(u, v, W) — 1.]>,
Incoherent object autocorrelation:
(X, Y, 2) = <Irn(x, y, 2)I?>, — b la(x, y, z)I?
where r.(x,y, z) = 7[D,(u, v, w)] is coherent autocorrelation of image

* Easier phase retrieval since have nonnegativity constraint on incoherent
image

e Coarser resolution since correlography SNR lower



Data Processing Steps for PROCLAIM
ERIM International W!th C@ﬁ‘elogi"aphy

Sensor+

Intensity Data
Dru, v, w) —— | Buffer k=1, .., K

FFT—1¢ ¥ FET

' IF.T.12 of Incoherent
Autocorrelation .
ra(x, v, 2) K L v, w12
_ L incch Phase
Refinement Algo’s¢ ¥ Revieval
Refined autoc. Eﬂcohfrfzjt_émag@
rjdk(x, y’ Z) ff(.k,j’,f)
3 |.|2¢ : %i Trx;es%m%ﬁ
P au@@x’?ﬁfﬁﬂ;&%n;ﬁni Coherent
Averaged autoc. || SAX.Y2) Phase
rd(x, v, 2) Retrieval
Threshold/Autoc.
Support Est. | Coherent Image
Autoc. Support gKx. ¥. 7)
Suplre(x, ¥, 2)] )2 |.|2¢
Locator Set
Rules Avefra ed Ima
X, V.
Locator Set 2llgdx v, 2
Lix y. z)

vor

Display or Further Processing



Obiject for Laboratory Experiments

ERIM International

ST Object. The three concentric discs forming a pyramid can be seen as dark
circles at their edges. The small piece on one of the two lower legs was
removed before this photograph was taken.



Collected Fourier Intensity Data

ERIM International

Data cube;

1024x1024 CCD
pixels
X 64 wavelengths

Shown at right:
128x128x64 sub-cube

(128x128 CCD pixels
at each of 64
wavelengths)




3-D Image Reconstructed by ITA
erminternationai 1rom Laboratory-Collected PROCLAIM Data

(x-y slices at a succession of planes at different depths)



Close Cousin to Phase Retrieval:
ERIM International SAR Autofocus

Signal (phase) history = Fourier transform of image

Measure G(x, v) = F(X, v) expli¢e(V)]

F = ideal signal history
be = phase error = 4w Ar/A

X = range, v = slow time
Ar = unknown radial motion

SAR platform motion
lonospheric phase error
Target motion (ISAR)

Problem, given signal history G(x, v),
what a priori information can we employ to determine ¢g(v) ?



Image Sharpening Algorithm

Systems Division

® For an initial phase estimate, G(X, V)= Gy(x, v)exp|-ig(v)]
compute corrected image _
P J g(x,y) = FT[G(x,v)]

® Find ¢(v) that maximizes the sharpness of the image:

81—Z\Qxy Z[ngyz]z—Z [1(x, )] Sr:%/r[/("’ay)]

® [fficient algorithm = Conjugate gradient search over ¢(v) using analytic

dient:
gradient: jg _ 2(1//\/)2 W(X)lm{G(Xa V)(F{Q(X,J/) Jar'[/( x, J/)]D }

(1) - X, y)

® Can also optimize over coefficients of polynomial expansion of phase:
/(% y)]

2. 95‘(%NE¥ (V)Y Im%%m%f{ﬂxy) D}

P I x, y)

o Use Standard gradlent Search algorithms
e.g., conjugate gradient

iHF 5/



ERIM International

SAR Focusing Example:
Maximizing Sharpness

initial

50}
100}
150f
200¢
250
300

350

" 160 .560 350
Initial Blurred image (0 Iterations)

focused

100 200 300

Focused after 100 lterations

focused

50

100

150

200

250

300

350

p

;1bbUnﬁ 2OD$L 366
Focused after 50 lterations

focused

50
100
150
200
250
300

350

100 200 300
Focused after 200 lterations
(and recentered)



2ystems Lhvision
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